
International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1332
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

A Study of Testing Pitfalls in Graphical User
Interface Testing and Its Elucidation

Iqra Tariq, Tasleem Mustafa
Abstract— The process of testing a product's interface is called graphical user interface testing conceded out to make certain that it

meets its written specifications. Testing includes booming set of errands and evaluating the result with the estimated output and capability to
recur equivalent set of chores several times. It includes different data inputs but same level of accuracy. GUI’s provide large interaction space
to the users. During testing, it is important to “adequately cover” this interaction space. Implementing GUI testing in earlier phases of the
software development life cycle improves excellence, speeds up progress process and reduces risks towards the end product. Manual
selection requires a tedious code inspection and does not scale. This research will uncover factors that affect product testing, and will evaluate
them with fault related factors in GUI testing. The approach is to provide elucidation for these testing pitfalls.

Index Terms—Automation, D&C, Elucidation, GUI Testing, Interface, Pitfalls, Testing,

——————————  ——————————
1 INTRODUCTION
 A PC interface is said to be versatile on the off chance
that it enhances the connection with every individual client.
Basic retention of such connection is not adequate. Changes
ought to additionally be delivered from the speculation of past
experience and lead to new associations. An interface is a
common limit crosswise over which autonomous frameworks
correspond with one another. Interface permits making a
proper physical association. With the goal that correspondence
should be possible successfully. In software engineering and
human-PC association, the client interface (of a PC project)
alludes to the graphical, literary and sound-related data the
system presents to the client. The client utilizes a few control
groupings, (for example, keystrokes with the PC console,
developments of the PC mouse, or choices with the
touchscreen) to control the project. There are a few various
types of client interfaces among them the most imperative are:
1.1 COMMAND LINE INTERFACE

A CLI (summon line interface) is a client interface to a
PC's working framework or an application in which the client
reacts to a visual brief by writing in an order on a
predetermined line, gets a reaction once again from the
framework, and after that enters another charge, et cetera. The
MS-DOS Prompt application in a Windows working
framework is a case of the procurement of a summon line
interface. Today, most clients incline toward the graphical
client interface (GUI) offered by Windows, Mac OS and others.
Ordinarily, a large portion of today's UNIX-based frameworks
offer both an order line interface and a graphical client
interface. CLIs are frequently utilized by developers and
framework directors, in building and logical situations, and by
actually propelled PC clients. CLIs are likewise mainstream
among individuals with visual handicap, subsequent to the
summons and reactions can be shown utilizing Refreshable
Braille shows.
1.2 GRAPHICAL USER INTERFACE

It is a kind of interface that permits clients to associate
with electronic gadgets through graphical symbols and visual

markers, for example, auxiliary documentation, instead of
content based interfaces, wrote summon names or content
route. GUIs were acquainted in response with the apparent
steep expectation to learn and adapt of order line interfaces
(CLIs), which oblige charges to be written on the console.

The activities in a GUI are generally performed
through direct control of the graphical components.
Notwithstanding PCs, GUIs can be found close by held
gadgets, for example, MP3 players, convenient media players,
gaming gadgets and littler family, office and industry gear.
The expression "GUI" tends not to be connected to other low-
determination sorts of interfaces with presentation resolutions,
for example, computer games (where HUD is favored), or not
confined to level screens, as volumetric showcases on the
grounds that the term is limited to the extent of two-
dimensional showcase screens ready to depict nonexclusive
data, in the PC's convention science research at the PARC
(Palo Alto Research Center). A GUI may be intended for the
necessities of a vertical business sector as application-
particular graphical client interfaces. Illustrations of utilization
particular GUIs incorporate mechanized teller machines
(ATM), purpose Of-Sale touchscreens at eateries, self-
administration checkouts utilized as a part of a retail location,
aircraft self-ticketing and registration, data stands in an open
space, similar to a train station or an exhibition hall, and
screens or control screens in an implanted mechanical
application which utilize a constant working framework
(RTOS).
1.3 TESTING:

Testing is the act of making target judgments in regards to
the degree to which the framework (gadget) meets, surpasses
or neglects to meet expressed destinations. It includes the
execution of a product part or framework segment to assess
one or more properties of hobby. By and large, these
properties demonstrate the degree to which the segment or
framework under test:
• meets the necessities that guided its configuration and
improvement,
• responds effectively to a wide range of inputs,
• performs its capacities inside of a satisfactory time,
• is adequately usable,
• can be introduced and keep running in its proposed
surroundings

————————————————
• Iqra Tariq is currently pursuing MS degree program in computer science

in University of Agriculture, Faisalabad, Punjab, Pakistan , PH-
00923006673700 E-mail: iqratariq@yahoo.com

• Tasleem Mustafa is currently working as Chairman in Department of
Computer science at University of Agriculture, Faisalabad, Punjab,
Pakistan. E-mail:tasleemustafa@uaf.edu.pk

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1333
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

• Achieves the general result its partner's yearning.
1.4 PURPOSE OF TESTING:

There are two crucial purposes of testing: confirming
acquisition details and overseeing danger. To begin with,
testing speaks the truth checking that what was determined is
what was conveyed: it confirms that the item (framework)
meets the practical, execution, configuration, and usage
necessities recognized in the acquirement determinations.
Second, testing speaks the truth overseeing danger for both
the obtaining office and the framework's
seller/designer/integrator. The testing project is utilized to
distinguish when the work has been "finished" so that the
agreement can be shut, the merchant paid, and the framework
moved by the office into the guarantee and upkeep period of
the undertaking.
2 GUI TESTING

Regardless of its significance, the advancement group
has been moderate to incorporate GUI testing as a center
practice, principally on the grounds that GUI testing is
troublesome. In this paper we first acquaint suggestions and
practices with compose and keep up vigorous GUI tests in a
smooth, brisk and common way.
GUI testing is the procedure of guaranteeing fitting usefulness
of the graphical client interface (GUI) for a given application
and verifying it fits in with its composed particulars.
Notwithstanding usefulness, GUI testing assesses plan
components, for example, design, hues, textual styles, text
dimensions, marks, content boxes, content arranging,
inscriptions, catches, records, symbols, connections and
substance. GUI testing procedures can be either manual or
programmed, and are regularly performed by third -
gathering organizations, as opposed to engineers or end
clients.

GUI testing can oblige a ton of programming and is
tedious whether manual or programmed. Typically the
product writer works out the planned capacity of a menu or
graphical catch for clarity so that the analyzer won't be
befuddled as to the normal result. GUI testing likewise tends
to test for certain project practices that clients expect, similar to
an hourglass when the system is occupied, the F1 key raising
the help framework and numerous other basic points of
interest.
2.1 TROUBLESHOOTING GUI TEST FAILURES

We consider that on numerous events investigating
GUI tests disappointments may require more exertion that
written work a test. All in all, GUI test disappointments are
because of these basic reasons:
• Environmental conditions
• A GUI segment couldn't be found
• More than one GUI segment coordinated the given inquiry
criteria.
2.2 GUI TESTING STEPS

Despite the fact that GUIs have attributes, for
example, client occasions for info and graphical yield, that are
not quite the same as those of customary programming and in
this manner require the advancement of distinctive testing
systems, the general procedure of testing GUIs is like that of
testing ordinary programming. The testing strides for
customary programming, stretched out for GUIs, take after:

DETERMINE WHAT TO TEST

Amid this first stride of testing, scope criteria, which
are sets of guidelines used to figure out what to test in
programming, are utilized. In GUIs, a scope standard may
oblige that every occasion been executed to figure out if it acts
effectively.
GENERATE TEST INPUT

The test info is a critical piece of the experiment and is
built from the product's determinations and/or from the
product's structure. For GUIs, the test data comprises of
occasions, for example, mouse clicks, menu choices, and item
control activities.
GENERATE PREDICTABLE OUTPUT

Test prophets produce the regular yield, which is
utilized to outline out if or not the product executed efficiently
amid testing. A test forecaster is a gadget that figures out if or
not the give way from the product is similar to the usual yield.
In GUIs, the ordinary yield incorporate screen depictions and
locations and titles of windows.
IMPLEMENT TEST CASES AND AUTHENTICATE OUTPUT

Experimentation is executed on the product and its
yield is contrasted and the normal yield. Completing of the
GUI's experiment is completed by performing all the info
occasions indicated in the experiment and complementary the
GUI's yield with the usual give way as given by the test
forecasters.
CONCLUDE IF THE GUI WAS SUFFICIENTLY TESTED

When all the tests have been executed on the
actualized programming, the product is broke down to check
which of its pieces were really tried. In GUIs, such an
examination is expected to distinguish the occasions and the
subsequent GUI states that were tried and those that were
missed. Note that this stride is necessary on the grounds that it
might not usually be imaginable to test in a GUI finishing
what is needed by the range criteria. In the wake of testing,
issues are distinguished in the product and remedied.
Alterations then prompt relapse testing.
EXECUTE REGRESSION TESTING

Relapse testing is exploited to assist guarantee the
correctness of the altered parts of the product and in addition
to build up confidence that progressions have not adversely
influenced previously tried parts. A deterioration test suite is
created that includes of:
 (1) A different subset experiments to retest parts of the first
programming that may have been influenced by alterations.
(2) New experiments to test influenced parts of the product,
not tried by the chose experiments. In GUIs, relapse testing
includes investigating the progressions to the design of GUI
articles, selecting experiments that ought to be rerun, and
additionally creating new experiments.

Any GUI testing technique must perform the greater
part of the above steps. As of now, GUI test fashioners
regularly depend on record/playback instruments to test
GUIs. The procedure included in utilizing these apparatuses is
to a great extent manual, making GUI testing moderate and
lavish. Every one of the systems must be coordinated, utilizing
a typical representation so that aftereffects of one apparatus
are good with the others.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1334
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

• The GUI testing errands ought to be as computerized as
could be allowed so that the test architect's Work is
rearranged.
• The general testing cycle characterized by the methods
ought to be proficient since programming testing is typically a
repetitive and extravagant procedure. Wastefulness may
prompt disappointment and relinquishment of the methods.
• The procedures ought to be powerful. At whatever point the
GUI enters a surprising express, the testing calculations ought
to identify the slip state and report all data important to
investigate the GUI.
• The instruments/procedures ought to be versatile. Test data
(e.g., experiments, prophet data, scope report, and slip report)
produced and/or gathered on one stage ought to be usable on
every other stage on which the GUI can be executed.
• Finally, the strategies ought to be sufficiently general to be
appropriate to an extensive variety of GUIs.

A Graphical User Interface (GUI) is a graphical front-
end to a product framework. A GUI contains graphical items
with certain particular qualities which can be utilized to focus
the condition of the GUI whenever. Programming creating
associations dependably craving to test the product altogether
to get greatest certainty about its quality. Yet, this requires
massive push to test a GUI application because of the
unpredictability included in such applications. This issue has
prompted the mechanization of GUI testing and diverse
procedures have been proposed for computerized GUI
Testing.
2.3 APPROACHES OF GUI TESTING
It is possible through these ways:
MANUAL BASED TESTING

Underneath this methodology, graphical displays are
checked physically by analyzers in conformance with the
necessities expressed in business documents.
RECORD AND REPLAY

GUI testing should be possible utilizing
mechanization devices. This is done in two sections. Amid
Record, test steps are caught into the computerization device.
Amid playback, the recorded tests procedures are executed on
the Application under Test. A catch replay instrument is an
arrangement of programming projects that catch client inputs
and stores it into an organization (a script) suitable to be
utilized at a later time to replay the client inputs. A
catch/playback device that bolster the accompanying
capacities could be utilized as a part of a more proficient and
completely coordinated test improvement environment.
• record scripts of client/framework connections
• user access to scripts for altering/upkeep
• user capacity to embed acceptance orders in the script
• allows replay of the recorded
MODEL BASED TESTING

A model is a graphical depiction of framework's
conduct. It helps us to comprehend and anticipate the
framework conduct. Models help in an era of proficient
experiments utilizing the framework necessities. Taking after
should be considered for this model based testing:
• Build the model
• Determine Inputs for the model
• Calculate expected yield for the model

• Run the tests
• Compare the real yield with the normal yield
• Decision on further activity
ACCEPTANCE TESTING WITH “GUI TEST DRIVERS”

GUI test driver devices help the designer do
utilitarian/acknowledgment testing through a client interface,
for example, a local GUI or web interface. Table-based
acknowledgment testing. Beginning from a client story (or
utilization case or literary necessity), the client enters in a table
the program's desires conduct.
REGRESSION TESTING

Our relapse testing procedure comprises of two
sections: a checker that sorts an experiment as being usable or
unusable; if unusable, it additionally figures out whether the
experiment can be repaired. The second part is the repairer
that repairs the unusable, repairable experiment. In spite of the
fact that for simplicity of clarification, these two sections are
dealt with exclusively, they could be consolidated together in
a usage. The relapse analyzer takes as information the G-CFGs
and G-call trees for both the first and changed GUI, the
legitimate beginning states SI for the altered GUI, and
experiments for the first GUI. The checker parcels the first test
suite into unusable and usable experiments. Imperatively, it
can likewise figure out if or not an unusable test can be
repaired. Naturally, an experiment can be repaired if its
starting state is still legitimate for the adjusted GUI (i.e., the
GUI can be brought into the state) and if its occasion
arrangement can be made lawful for the altered GUI. To make
a GUI occasion arrangement legitimate, we acquire a lapse
recuperation strategy from compiler innovation; we skip
occasions or attempt to embed a solitary new occasion until a
lawful occasion grouping is gotten. This arrangement can be
found by including so as to skirt occasions or occasions from
the changed GUI.
EVENT CAPTURE
 To battle this and different issues, analyzers have
gone 'in the engine' and gathered GUI collaboration
information from the basic windowing framework. By
catching the window "occasions" into logs the communications
with the framework are currently in an organization that is
decoupled from the presence of the GUI. Presently, just the
occasion streams are caught. There is some sifting of the
occasion streams important since the surges of occasions are
typically extremely point by point and most occasions aren't
straightforwardly applicable to the issue. This methodology
can be made simpler by utilizing a MVC construction
modeling for instance and making the perspective (i.e. the GUI
here) as straightforward as could be expected under the
circumstances while the model and the controller hold all the
rationale. Another methodology is to utilize the product's
implicit assistive innovation, to utilize a HTML interface or a
three-level structural planning that improves it likewise
conceivable to partitioned the client interface from whatever is
left of the application.

Another approach to run tests on a GUI is to
incorporate a driver with the GUI so that orders or occasions
can be sent to the product from another project. This strategy
for straightforwardly sending occasions to and getting
occasions from a framework is exceptionally attractive when

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1335
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

testing, subsequent to the data and yield testing can be
completely computerized and client blunder is disposed of.
HUMAN TESTING

One way to deal with GUI testing is to just have a
human analyzer perform an arrangement of client operations
on the objective application and confirm that it is acting
effectively. In any case, this manual methodology can be
tedious, dull, and blunder inclined. A more effective
methodology is to compose your GUI tests such that client
activities are performed in a mechanized way. The
mechanized methodology permits you to run your tests
rapidly and dependably in a repeatable way.
COMPUTERIZED GUI TESTING

Modernized GUI Testing is a response for each one of
the issues raised with Manual GUI Testing. An Automated
GUI Testing mechanical assembly can playback all the
recorded plan of assignments, difference the results of
execution and the typical lead and report accomplishment or
failure to the test modelers. Once the GUI tests are made they
can without quite a bit of a stretch be repeated for different
number of times with particular data sets and can be contacted
cover additional components at a later time.
EVENT-FLOW MODEL

The occasion stream model contains two sections. The
principal part encodes every occasion as far as preconditions,
i.e. the state in which the occasion may be executed, and
impacts, i.e. the progressions to the state after the occasion has
executed. The second part speaks to every conceivable
arrangement of occasions that can be executed on the GUI as
an arrangement of coordinated diagrams.
COMPONENT LOOKUP

To reenact a client cooperating with a GUI, we
initially need to get a reference on a GUI part. FEST does not
force a particular method for performing segment lookups.
Rather, it offers the accompanying lookup sorts: by segment
name, by segment sort, and by client characterized hunt
criteria.
BY COMPONENT NAME

As beforehand expressed, utilizing a remarkable
name or identifier for GUI segments ensures that we can
simply discover them, paying little mind to any adjustment in
the GUI
BY COMPONENT TYPE

FEST likewise gives segment lookup by sort. This sort
of lookup is dependable the length of the GUI under test has
one and only segment of such sort generally FEST won't know
which GUI part is the one we are keen on, and the test will
come up short.

An ever-present means of communicating with
software systems is graphical user interfaces. GUI acts as a
front end to the core application code and also responds to
user procedures such as click event or menu selection. The
interaction between core code and GUI is done by method
calls. With the help of GUI software’s are becoming more
users friendly. A large portion of code is dedicated for
GUI.GUI comprises as much as 60 percent of total code. Due
to increasing importance of GUIs its testing has become vital.
It enhances entire system’s safety, sturdiness, and usability [1].
 The prevalent use of GUIs for interacting with

software is leading to the erection of more and more complex
GUIs. With the increasing complexity come challenges in
testing the appropriateness of a GUI and the core software.
The complexity of modern GUIs has made its testing more and
more difficult task [2]. Graphical user interfaces (GUIs)
provides an enormous number of impending event sequences
to users. GUI’s are elastic in nature. Therefore the number of
event sequences increases exponentially with length. An ever-
present challenge of GUI testing is to make those sequences
that lead to potentially challenging situation.
 GUI testing techniques currently used are deficient
and mostly manual. The most common technique used in GUI
testing is record-playback. A test designer generates mouse
and keyboard events and interact GUI by means of it. The
record tool captures interfaces, GUI session, user events and
stores them. Later on the tester playback these recorded
sessions to retest the events with different inputs. The pitfall of
this process is its exceptionally labor intensive and relies on
tester skills [3].

Higher level of efficiency can achieved by automatic
test case generator but it needs programmer to code all
possible potential decision points. Most of the important GUI
decisions are missed by the record-playback technique. To
avoid this beta copies of software are released. Software
testing is exhaustive, laborious a resource consuming.
Traditional software testing techniques do not effectively
tackle GUI testing pitfalls.
3 REVIEW OF LITERATURE

Kim and Yoon[4] characterized that scheming the
client interfaces of current gadgets and programming projects
is complimenting an additional multifaceted assignment in
view of the rising requests of execution and
straightforwardness. The modeler ought to build up the
correspondence among the clients and the interfaces
considering client goals, needs, capacities and realistic
interface ways. One more reason for complexities is the
shortened time term for mounting crisp items. Draftsmen are
obliged to incline toward outline systems that are all around
sorted out and predictable for planning worthy client
interfaces.

Maxion and Reeder [5] Security may be traded off
when people commit errors at the client interface. Clear
content is erroneously sent to reporters, delicate records are
left unprotected, and mistakenly designed frameworks are left
defenseless against assailants. Such oversights may be faulted
for human lapse, yet the normality of human blunder
recommends that slip-ups may be preventable through better
interface outline. Certain client interface develops drive clients
toward lapse, while others encourage achievement. Two
security-touchy client interfaces were assessed in a research
facility client study. The Windows XP document consents
interface and an option interface, called Salmon, composed as
per a lapse maintaining a strategic distance from standard to
check the deceptive builds in the XP interface. A logical
hypothesis in its initial phases of improvement is displayed.

Bowen and Reeves[6] characterized that the
improvement of client interface administration frameworks
(UIMS) in view of the intelligent partition of framework
usefulness and client interface (UI) is illustrated by the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1336
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Seeheim model. The division permits us to not just focus on
the diverse apprehensions which distinctive measures of the
framework advancement existing, at the same time, all the
more vitally, takes into account diverse methodologies and
outline procedures. They portrayed the presentation model,
which formally catches a casual UI plan, and talked about how
they utilized outlines as a part of a formal refinement process
and in addition for configuration equality and consistency
checking. The presentation model permitted catching static
properties of a UI outline and in this manner indicated with
formalism, FSM, to catch dynamic UI conduct in view of UI
capacities which change the accessible Functionality of the UI
for a client, giving PIMs.

Eslambolchilar et al. [7] depicted element frameworks
approach for continuous communication of interfaces. It
permits the utilization recreations, and efficient devices to
architects for looking at the execution and strength of the
framework. Element approach alongside manual control
model aides in institutionalization of the framework. It
likewise tunes up the framework parameters before the
culmination.

Jimenez and Librane [8] expressed that the treatment
of more mind boggling applications has lead to the
advancement of apparatuses for UI outline in which the
framework planner lives up to expectations with abnormal
state and conceptual models, specifically visual displaying of
UIs. The level of deliberation on UI configuration permits the
UIs to be adjusted and created for a few stages. The outline of
UIs is currently an improvement process in which an
abnormal state detail and displaying of the UI assume a
urgent part. They examined a Model-driven advancement
(MDD) procedure for demonstrating WIMP (Windows, Icons,
Menus and Pointers) WIMP-based UIs. We have characterized
another sort of UML graph.

Yuan and Memon [9] expressed that past they added
to an input based strategy to upgrade a two way covering test
suite. They did this by breaking down the impact of each GUI
occasion on the GUI's run-time state and getting sets of
occasions that impact each other by they way they alter the
GUI's state. This ''impact" was caught as the Event Semantic
Interaction (ESI) connection and displayed as a chart called the
ESI Graph (ESIG). An imperative property of these
experiments is that every adjoining occasion are connected by
means of the ESI relationship. They abridged the diverse
systems in their examination strategy. Be that as it may, albeit
superior to the comprehensive approach, the quantity of
experiments needed for the ESIG-based strategy additionally
becomes exponentially with length for most applications,
making it hard to test.
3.1 TEST PRINCIPLES APPLIED TO GUIS

Our proposed approach to testing GUIs is guided by
several principles, most of which should be familiar. By
following these principles we will develop a test process
which is generally applicable for testing any GUI application.
We intend to categorize errors into types and design test to
detect each type of error in turn. In this way, we can focus the
testing and eliminate duplication.
LAYERED AND STAGED TESTS

We will organize the tests into a sequence of test

stages. The belief here is that we bring tests of the bottom level
of detail in constituents up front. We instrument integration
tests of components and test the integrated application last. In
this way, we can build the testing up in trusted layers.
TEST AUTOMATION...WHEREVER POSSIBLE

Automation furthermost habitually flops because of
over-ambition. By piercing the test development into stages,
we can seek and find opportunities to make use of automation
where appropriate, rather than trying to use automation
everywhere.
HIGH LEVEL TEST PROCESS

An outline test process is presented in Figure 1 - The
high-level test process. We can split the process into three
overall phases: Test Design, Test Preparation and Test
Execution. In this paper, we are going to concentrate on the
first stage: Test Design, and then look for opportunities for
making effective use of automated tools to execute tests.
TYPES OF GUI ERRORS

We can list some of the multifarious errors that can
occur in a client/server-based application that we might
reasonably expect to be able to test for using the GUI. The list
in Table 1 is certainly not complete, but it does demonstrate
the wide variety error types. Many of these errors relate to the
GUI, others relate to the underlying functionality or interfaces
between the GUI application and other client/server
components.

TABLE 1
BASIC GUI ERRORS

Data validation
Incorrect field defaults
Mis-handling of server
process failures
Mandatory fields, not
mandatory
Wrong fields retrieved by
queries
Incorrect search criteria
Field order
Multiple database rows
returned, single row
expected
Currency of data on
screens
Window object/DB field
correspondence

Correct window modality?
Window system commands not
available/don’t work
Control state alignment with
state of data in window?
Focus on objects needing it?
Menu options align with state
of data or application mode?
Action of menu commands
aligns with
state of data in window
Synchronization of window
object content
State of controls aligns with
state of data in window?

3.2 FOUR STAGES OF GUI TESTING

This paper proposes a GUI test design process that
fits into an overall test process. Test design becomes a series of
straightforward activities, each focusing on different types of
error. The question now is, ‘how does this fit into existing test
processes?’ To help readers map GUI test types to a more
traditional test process, we have grouped the test types in four
stages.
The four stages are summarized in Table 2 below. We can map
the four test stages to traditional test stages as follows:

• Low level - maps to a unit test stage.
• Application - maps to a unit test or functional system

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1337
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

test.
• Integration - maps to a functional system test stage.
• Non-functional - maps to non-functional system test

stage.
The mappings described above are approximate. Clearly there
are occasions when some ‘GUI integration testing’ can be
performed as part of a unit test. The test types in ‘GUI
application testing’ are equally suitable in unit or system
testing. In applying the proposed GUI test types, the objective
of each test stage, the capabilities of developers and testers, the
availability of test environment and tools all need to be taken
into consideration before deciding whether and where each
GUI test type is implemented in your test process. The GUI
test types alone do not constitute a complete set of tests to be
applied to a system. We have not included any code-based or
structural testing, nor have we considered the need to conduct
other integration tests or non-functional tests of performance,
reliability and so on. Your test strategy should address all
these issues.

TABLE 2
MAPPING OF TEST TYPES AND STAGES

Stage

Test Types

Low Level Checklist testing
Navigation

Application Equivalence Partitioning
Boundary Values
Decision Tables
State Transition Testing

Integration Desktop Integration
C/S Communications
Synchronization

Non-Functional Soak testing
Compatibility testing
Platform/environment

3.3 JUSTIFYING AUTOMATION

Automating test execution is normally justified based
on the need to conduct functional regression tests. In
organizations currently performing regression test manually,
this case is easy to make - the tool will save testers time.
However, most organizations do not conduct formal
regression tests, and often compensate for this ‘sub-
consciously’ by starting to test late in the project or by
executing tests in which there is a large amount of duplication.
In this situation, buying a tool to perform regression tests will
not save time, because no time is being spent on regression
testing in the first place. In organizations where development
follows a RAD approach or where development is chaotic,
regression testing is difficult to implement at all – software
products may never be stable enough for a regression test to
mature and be of value. Usually, the cost of developing and
maintaining automated tests exceeds the value of finding
regression errors.

We propose that by adopting a systematic approach

to testing GUIs and using tools selectively for specific types of
tests, tools can be used to find errors during the early test
stages. That is, we can use tools to find errors pro-actively
rather than repeating tests that didn’t find bugs first time
round to search for regression errors late in a project.
3.4 AUTOMATING GUI TESTS

Throughout the discussion of the various test types in
the previous chapter, we have assumed that by designing tests
with specific goals in mind, we will be in a better position to
make successful choices on whether we automate tests or
continue to execute them manually. Based on our experience
of preparing automated tests and helping client organizations
to implement GUI test running tools we offer some general
recommendations concerning GUI test automation below.

TABLE 3
AUTOMATING GUI TESTS

• Pareto law

• Hybrid

Approach

• Coded

scripts

• Recorded

Scripts

• Test

Integration

• Migrating

Manual
Test Scripts

• Non-

Functional
Tests

• We expect 80% of the benefit to
derive from the automation of
20% of the tests.

• The tools to perform navigation

and data entry prior to manual
test execution. Consider using the
tool for test running, but perform
comparisons manually or ‘off-
line’.

• These work best for navigation

and checklist-type scripts, where
loops and case statements in code
leverage simple scripts Are
relatively easy to maintain as
regression tests.

• Need to be customized to make

repeatable. Sensitive to changes in
the user interface.

• Automated scripts need to be

integrated into some form of test
harness. Test harnesses are
usually crude so custom built
harnesses are required

• Manual scripts document

automated scripts Delay
migration of manual scripts until
the software is stable, and then
reuse for regression tests.

• Scripts can be reused for soak

tests, but they must be of
concern.Instrument these scripts
to take response time
measurements and re-use for
performance testing.

Everyone on the world can make mistakes. Some of

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1338
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

them are of no importance but some of them become
dangerous and expensive to bear. That’s why everything
made by human needs to be checked. GUI testing is really
required to point out the defects and errors that were made
during the development phases. It’s essential since it makes
sure of the Customer’s reliability and their satisfaction in the
application. It is very important to ensure the Quality of the
product. Quality product delivered to the customers helps in
gaining their confidence. Testing is necessary in order to
provide the facilities to the customers like the delivery of high
quality product or software application which requires lower
maintenance cost and hence results into more accurate,
consistent and reliable results. Testing is required for an
effective performance of software application or product. GUI
testing plays an important to ensure that the application
should not result into any failures because it can be very
expensive in the future or in the later stages of the
development.
4 RESULT AND DISCUSSION:

The intact field of human computer interaction is
based on mental model research, which is based on the
assumptions of how the users perceive systems and how the
systems should be for better understanding of usable systems.
The insight in user’s cognitive processes when using a system
could successfully change the current system and methods of
designing interfaces. Designers are sometimes asked to
become psychologists and psychologists are sometimes asked
to become designers.

A survey was conducted to collect views of various
testers from different software houses about the expected
elucidations of the pitfalls found in GUI testing strategy. Such
as, built in dependency, reduction in system call, code
instrumentation, unsolicited events instrumentation,
functionality in one function call, avoid dependencies between
objects and documentation for every possible event, these
were the expected elucidation for the pitfalls discussed in
research. The results of the survey were presented in graphical
form as below:

FIG 1: SURVEY RESULTS
Round about 35% people were strongly agree about a

solution of interface pitfall, built in dependency, 55% were
agree, 5% were Neutral, 5% were disagree and 0% were
strongly disagree. In response to second solution, “reduction
in system command”, 27% persons were strongly agree, 48%
were Agree, 20% were neutral, 5% were disagree and only 0%

were strongly disagree. Approximately, 20% people gave their
consent as strongly agree, in the answer of third solution a of
interface pitfalls, “ code instrumentation” 55% as agree, 15% as
neutral, 5% as disagree and 5% as strongly disagree. In
response to “ unsolicited events instrumentation” solution, it
was recorded that 45% were strongly agree, 38% were agree,
22% were neutral, 0% were disagree, 5% were strongly
disagree. Round about 0% people were agree with the notion
of “functionality in one function call”, 30% were agree, 0%
were neutral, 20% were disagree and 0% were strongly
disagree. 36% people belong to various software houses were
strongly agree with the notion of “ avoid dependencies
between objects”, 40% were agree, 3% were neutral, 19% were
disagree and only 2% were strongly disagree. In response to a
solution, “ documentation for every possible event”, 55%
people recorded their idea as strongly agree, 35% as agree, 5%
as neutral, 5% disagree and 0% as strongly disagree.
FUTURE WORK:

In this exploration more work to be done to refine the
testing methodologies to transform them into convenient and
adaptable GUI test technique. Our desire was to figure out
GUI testing pitfalls that are a piece of framework test
procedure. Mechanization regularly comes up short due to
over-desire. By part the test procedure into stages, we can look
for and discover chances to make utilization of
computerization where suitable, as opposed to attempting to
utilize robotization all over the place.
Refrences:
[1] Mijailović. Z and D. Milicev. 2014. Empirical analysis of
GUI programming concerns. International Journal of Human-
Computer Studies, 72:757-771.
[2] Yang. W., Z. Chen., Z. Gao., Y. Zou and X. Xu. 2014. GUI
testing assisted by human knowledge: Random vs. functional.
The Journal of Systems and Software, 89:76-86.
[3] Bae. G., G. Rothermel and D. Bae. 2014. Comparing model-
based and dynamic event-extraction based GUI testing
techniques: An empirical study. The Journal of Systems and
Software,97:15-46.
[4] Kim, H and W. C. Yoon. 2005. Supporting the Cognitive
Process of User Interface Design with Reusable Design Cases.
International Journal of Human Computer Studies, 62:457-486.
[5] Maxion, R. A and R. W. Reeder. 2005. Improving user-
interface dependability through mitigation of human error.
International Journal of Human-Computer Studies, 63: 25-50
[6] Bowen. J and S. Reeves. 2007. Formal Models for Informal
GUI Designs. Electronic Notes in Theoretical Computer
Science. 183:57-72.
[7] Eslambolchilar. P. and R. M. Smith. 2008 Control centric
approach in designing scrolling and zooming user interfaces.
International Journal of Human-Computer Studies,66:838-856.
[8] Jimenez, J. M. A and L. Lribarne. 2008. An extension of
UML for the modeling of WIMP user interfaces. Journal of
Visual Languages and Computing, 19:695-720.
 [9] Yuan. X and A. M. Memon. 2010. Iterative execution-
feedback model-directed GUI testing. Information and
Software Technology. 52:559-575.

0%
20%
40%
60%
80%

100%

Bu
ilt

 in
…

Re
du

ct
io

n
in

…
Co

de
…

U
ns

ol
ic

ite
d…

Fu
nc

tio
na

lit
y

in
…

Av
oi

d…
Do

cu
m

en
ta

tio
…

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

IJSER

http://www.ijser.org/
http://www.sciencedirect.com/science/article/pii/S1071581908000761

	1 Introduction

